Samedi 20 Juillet 2024
taille du texte
Jeudi, 13 Octobre 2011 07:01

Man Vs. Machine: Four Automatic Overclocking Techs, Compared

Rate this item
(0 Votes)

Targeting inexperienced tuners with easy-to-use buttons, several motherboard vendors now provide one-touch overclocking technologies that take away the guesswork. We examine the ease, effectiveness, and safety of methods provided by four major brands.

It’s been a while since we’ve written a comprehensive overclocking guide, yet most of the methods from our previous guide still apply. The biggest difference is that Intel’s FSB was replaced several years back by a base clock (similar to AMD’s reference clock) in the transition from LGA 775 to LGA 1366. The second-biggest difference is that Intel all but locked down that base clock on its LGA 1155-based platforms. Fortunately, buyers who can afford the extra premium tied to Intel’s K-series processors get full multiplier access, which eliminates much of the need for sky-high BCLK settings.

If you're hitting this story as a neophyte and find that previous paragraph gibberish, check out our previous overclocking guide (including the AMD parts). Hopefully that will get you to the point where overclocking Intel's Sandy Bridge-based processors make a little more sense.

Now, with that said, we realize that not all of our readers have the time, risk adversity, or overclocking chops to follow the entire process of manually tweaking multipliers, base clocks, and voltages. Thus, while each of our system builds includes a detailed description of the overclocking settings we choose, companies like ASRock, Asus, Gigabyte, and MSI would like to make the process even easier.

Man Vs. Machine: Four Automatic Overclocking Techs, Compared

Techniques like built-in BIOS automatic overclocking profiles, active intelligent overclocking, profile-based overclocking from a desktop interface, and even push-button overclocking make free performance available to beginners with no experience at all!

But Is Automatic Overclocking Safer?

Our overclocking articles often mention a process called “electromigration,” where material is physically transferred from one part of a circuit to another. While the full description of this phenomenon is complex, it’s easy to understand that an insulator contaminated with conductive particles no longer insulates. Transistor gates function as either insulators or conductors depending on charge state and are particularly prone to this type of damage. And yet, many technology enthusiasts place the blame for a fried processor or GPU solely on heat, ignoring the fact that voltage is a measure of force.

Force causes electromigration, and colder silicon more easily resists that force by being less pliable. Colder temperatures also increase the insulation capabilities of transistor gates in the “off” phase, reducing the number of electrons that are forced through the closed gate. The  problem with blaming heat alone on a failure is that moderate increases in electromigration resistance usually require drastic temperature reductions. When it comes to protecting hundreds of dollars in equipment, we always make our recommendations to you erring on the side of caution.

We've learned through trial, error, and dead processors that voltage levels beyond 1.45 V at above-ambient temperatures can kill an Intel CPU etched at 32 nm (Sandy Bridge-based parts included) very quickly. Those same processors die a fairly slow death at voltage levels between 1.40 V and 1.45 V (somewhere between weeks and months on our test benches). And we're expecting more than a year of reliable service from the parts we've dutifully kept below 1.40 V. Not all motherboards are perfect however. Voltage instability on a particularly cheap motherboard fried one of our processors when it was set to only1.38 V. Subsequently, you've seen us use 1.35 V for the overclocking tests in older motherboard round-ups, embracing 1.38 V to 1.40 V in more recent pieces covering higher-end platforms.

...Or Any Better?

Rather than sit here and try to beat the “Automatic” and/or “Easy” overclocking methods engineered by some of today's most popular motherboard manufacturers, we’re going to let them try to beat us. We’re even going to make it easy for them by handicapping ourselves with a 1.35 V voltage ceiling (the same one we used in the overclocking tests of our most recent motherboard round-up).  We'll only start raising eyebrows if they exceed that 1.4 V limit that we simply cannot recommend our readers push past if they have any expectation of long-term durability. We’ll go on to benchmark the “best they can do” against the “safest we can do” before judging the ease, safety, and effectiveness of their methods.


French (Fr)English (United Kingdom)

Parmi nos clients